

SCOSTEP-WDS Workshop September 28-30, 2015

Energetic particle precipitations impacts on the mesosphere observed by the PANSY radar

NISHIYAMA Takanori^{1,2}; SATO Kaoru³; NAKAMURA Takuji^{1,2}; TSUTSUMI Masaki^{1,2}; SATO, Toru⁴; NISHIMURA, Koji^{1,2}; TANAKA Yoshimasa^{1,2}; TOMIKAWA, Yoshihiro^{1,2}; KOHMA Masashi³;

¹National Institute of Polar Research, ²Department of Polar Science, SOKENDAI,

³Department of Earth and Planetary Science, The University of Tokyo,

⁴Department of Communications and Computer Engineering, Kyoto University

Outline

- ✓ Introduction
 - PMWE: What is Polar Mesosphere Winter Echo?
 - the PANSY radar: Dataset used in this study
- ✓ Event reports
 - St. Patrick's Day Event
 - the Summer Solstice 2015 Event
- ✓ Conclusions and future works

Polar Mesosphere Winter Echo

- ✓ Polar Mesosphere Winter Echo (PMWE)
 - Mesosphere echo in the polar regions during non-summer period [e.g., *Ecklund and Balsley*, 1981]
 - Altitude: 60-80 km without well-defined peak
 - Local time: primarily confined to daytime

- Mean occurrence rate is only 2.9 % (Total 447.5 h) [Zeller et al. 2006]
 - This is partly because electron density in dark mesosphere is extremely low.
 - Good correlation to enhancement of electron density in D region due to Solar Proton Event (SPE) [*Kirkwood et al.*, 2002]

Correlations to SPEs

- ✓ First report on mesospheric echo associated with Solar Proton Event
 - quasi simultaneous detection of SPE and PMWE (GOES and MST radar @ Esrange)

Kirkwood et al., [2002]

The PANSY radar

- ✓ However, observation of PMWE has been limited during period of SPEs
- ✓ PANSY (Program of the ANtarctic SYowa) [Sato et al., 2014]
 - The largest MST radar in Antarctica
 - PMWE was identified for 110 days from March to September 2013, even during period without SPEs [*Nishiyama et al.*, 2015].
 - can be used as riometer in normal operation
- \checkmark In this study, we used the data obtained from
 - March, 2015: the full-system operation by 55 antenna groups
 - June 2015: the 22% of the full-system

Table 1. Specification of PANSY radar	
System	Coherent Pulse Doppler Radar (Active phased array)
Transmitted Frequency /	47 MHz / <mark>113 kW</mark> (full system 520 kW)
ntenna aperture	3,900 m ² (full system 18,000 m ²)
Antenna	228 (1045) Yagi-antennas with transmitter and receiver modules
Receiver	Multi-channel system composed of 12 (55) groups

St. Patrick's Day Event

Overview

- \checkmark During the period of the recovery phase
 - Increase in Energetic Electron Precipitations (EEPs) in the range of 30-300 keV were observed by POES/MEPES
 - Strong PMWE around 60 km altitude was accompanied by two enhancements of CNA.

8

March 19, 2015

9

March 22, 2015

- March 22; Sporadic PMWE intensification below 60 km altitude
 - Backscattered echo power was relatively weak
 - It was accompanied by steep increase in CNA with larger amplitude
 - This result may suggest that we observed temporal evolutions of ionizations in FOV associated with localized EEPs.

the Summer Solstice 2015 Event

Overview

- \checkmark During the period of the main phase
 - The peak EEP flux in 100-300 keV was observed.
 - At the same time, both "Nighttime PMWE" and CNA occurred.

Nighttime PMWE

✓ Nighttime PMWE is less observed than daytime PMWE due to poor electron density in the mesosphere.

Summary

- ✓ We presented simultaneous PMWE and CNA observation during the two storms in order to demonstrate EPP impacts on the mesosphere.
- ✓ During recovery phase of St. Patrick's Day event,
 - March 19; Strong and long-lived PMWE around 60 km altitude with time duration about 5 hours.
 - March 22; Sporadic PMWE intensification below 60 km altitude accompanied by larger CNA than March 19.
- ✓ During main phase of the Summer Solstice 2015 event,
 - June 22; Strong "Nighttime PMWE", which implies unusual ionization in the mesosphere due to EEP, was observed at 70-80 km altitude.
- ✓ The differences of PMWE characteristics (duration, altitude, LT) among each event should be related to those of storms (magnitude, transport and loss process).
- ✓ Future works
 - We have to estimate electron density profile corresponding to each event using model to discuss about EPP impacts more quantitatively.